F(2.5)=2x^2-3(2.5)

Simple and best practice solution for F(2.5)=2x^2-3(2.5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(2.5)=2x^2-3(2.5) equation:



(2.5)=2F^2-3(2.5)
We move all terms to the left:
(2.5)-(2F^2-3(2.5))=0
We add all the numbers together, and all the variables
-(2F^2-3(2.5))+2.5=0
We calculate terms in parentheses: -(2F^2-3(2.5)), so:
2F^2-3(2.5)
We add all the numbers together, and all the variables
2F^2-7.5
Back to the equation:
-(2F^2-7.5)
We get rid of parentheses
-2F^2+7.5+2.5=0
We add all the numbers together, and all the variables
-2F^2+10=0
a = -2; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-2)·10
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-2}=\frac{0-4\sqrt{5}}{-4} =-\frac{4\sqrt{5}}{-4} =-\frac{\sqrt{5}}{-1} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-2}=\frac{0+4\sqrt{5}}{-4} =\frac{4\sqrt{5}}{-4} =\frac{\sqrt{5}}{-1} $

See similar equations:

| t=89-72 | | 15-5=r | | x=6x–3x+4–2x | | 55-7x=20 | | 3(b+7)=6 | | 3x^2+48-12=0 | | 2x+44=54 | | -16.03+10.77-1.2m=-19.26-2m | | 5x-13=31 | | 0.08x+0.12(135-x)=0.32x | | 29x-3=9x-8(2-3) | | 2-5v=-4v+20 | | 4(r+6)=60 | | 20-2m=2m-20 | | 20-2m=2m−20 | | 8u-7=65 | | 55+-12x=31 | | 14c=11+15c | | 59-2x=45 | | x^2+14=-45 | | -1(3x+8)=-6x-23 | | |1y|+15=21 | | 7.35/4=x | | 4x=7.35 | | q=4+7 | | -0.35-11k=-10.5k | | q=4=7 | | z/3=-27 | | 5/2x+1/2x=2.1/2+7/2x | | x/4=7.35 | | 7+18f=-9+2f+17f | | 2(2m)+4(4m+2)=108​​m= |

Equations solver categories